Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Bulletin of Russian State Medical University ; 2023(1):4-11, 2023.
Article in English | EMBASE | ID: covidwho-2275269

ABSTRACT

Technological versatility and the humoral and cellular immune response induction capacity have conditioned wide spread of adenoviral vectors as vaccine and gene therapy drugs. However, vaccination with Sputnik V made a significant portion of the population immune to the types 5 and 26 (Ad5 and Ad26) recombinant human adenovirus vectors, which are some of the most frequently used bases for candidate vaccines. Today, vaccine designers tend to select alternative adenovirus serotypes as platforms to develop vaccines against new pathogens on. A good example is simian adenovirus type 25 (SAd25), which belongs to subgroup E. It is genetically distant from Ad5 and exhibits extremely low seroprevalence in human beings, which makes it an appealing alternative vaccine vector. The purpose of this work was to design and study a new vaccine platform based on simian adenovirus type 25. We relied on the advanced methods of molecular biology and virology to construct and make recombinant adenoviruses;the phylogenetic analysis in the context of this study was enabled with bioinformatic methods. The resulting recombinant adenoviral vector can effectively replicate itself in the HEK293 cell line (human embryonic kidney cells). This work substantiates the expediency of further investigation into the SAd25 vector as a platform for development of the prevention vaccines against various infectious diseases.Copyright © 2023 Pirogov Russian National Research Medical University. All rights reserved.

2.
Acta Naturae ; 12(3): 114-123, 2020.
Article in English | MEDLINE | ID: covidwho-918830

ABSTRACT

The Middle East Respiratory Syndrome (MERS) is an acute inflammatory disease of the respiratory system caused by the MERS-CoV coronavirus. The mortality rate for MERS is about 34.5%. Due to its high mortality rate, the lack of therapeutic and prophylactic agents, and the continuing threat of the spread of MERS beyond its current confines, developing a vaccine is a pressing task, because vaccination would help limit the spread of MERS and reduce its death toll. We have developed a combined vector vaccine for the prevention of MERS based on recombinant human adenovirus serotypes 26 and 5. Studies of its immunogenicity have shown that vaccination of animals (mice and primates) induces a robust humoral immune response that lasts for at least six months. Studies of the cellular immune response in mice after vaccination showed the emergence of a specific CD4+ and CD8+ T cell response. A study of the vaccine protectivity conducted in a model of transgenic mice carrying the human DPP4 receptor gene showed that our vaccination protected 100% of the animals from the lethal infection caused by the MERS-CoV virus (MERS-CoV EMC/2012, 100LD50 per mouse). Studies of the safety and tolerability of the developed vaccine in rodents, rabbits, and primates showed a good safety profile and tolerance in animals; they revealed no contraindications for clinical testing.

SELECTION OF CITATIONS
SEARCH DETAIL